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An extended Landau-Levieh model of liquid-propellant combustion, one that allows for a local depen-

dence of the burning rate on the (gas) pressure at the liquid-gas interface, exhibits not only the classical
hydrodynamic cellular instability attributed to Landau but also a pulsating hydrodynamic instability asso-

ciated with sufficiently negative pressure sensitivities. Exploiting the realistic limit of small values of the

gas-to-liquid density ratio p, analytical formulas for both neutral stability boundaries may be obtained by

expanding all quantities in appropriate powers ofp in each of three distinguished wave-number regimes.

In particular, composite analytical expressions are derived for the neutral stability boundaries Ap(k), where
At, is the pressure sensitivity of the burning rate and k is the wave number of the disturbance. For the

cellular boundary, the results demonstrate explicitly the stabilizing effect of gravity on long-wave distur-

bances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave pertur-

bations, and the instability associated with intermediate wave numbers for negative values of Ap, which is
characteristic of many hydroxylammonium nitrate-based liquid propellants over certain pressure ranges.

In contrast, the pulsating hydrodynamic stability boundary is insensitive to gravitational and surface-tension

effects but is more sensitive to the effects of liquid viscosity because, for typical nonzero values of the

latter, the pulsating boundary decreases to larger negative values of Aj_ as k increases through O(1) values.
Thus, liquid-propellant combustion is predicted to be stable (that is, steady and planar) only for a range

of negative pressure sensitivities that lie below the cellular boundary that exists for sufficiently small

negative values of Ap and above the pulsating boundary that exists for larger negative values of this param-
eter.

Introduction

The stability of liquid-propellant deflagration is a

fundamental problem that was first treated by Lan-
dau in a classical study [1] that introduced the con-

cept of hydrodynamic instability in a combustion

context. Referred to as the "slow combustion of liq-

uids," that analysis is most applicable to certain re-

alistic, limiting cases in which combustion may be

approximated by an overall reaction at the liquid-

gas interface. For example, the gas flame may occur

under near-breakaway conditions, exerting little

thermal or hydrodynamic influence on the burning

propellant; or distributed combustion may only oc-

cur in an intrusive regime such that the reaction

zone lies closer to the liquid-gas interface than the

length scale of any disturbance of interest; or the

liquid propellant may simply undergo exothermic

decomposition at the surface without any significant

distributed combustion, such as appears to occur in

some types of hydroxylammonium nitrate (HAN)-

based liquid propellants at low pressures [2]. The

results of Landau's study, along with a subsequent
paper by Levich [3] that replaced the effects due to

surface tension in the earlier study with those due
to (liquid) viscosity, have been widely quoted and

offer much in terms of physical insight into the na-

ture of this type of instability, which, as in the case

of gaseous combustion, is associated with the density
change across the reaction front. However, because

these models assumed a constant normal burning

rate, it has proven useful to improve upon them by

incorporating a more realistic coupling oft.he normal

propagation speed with the local pressure and tem-

perature fields, thereby allowing for a locally varying

burning rate [4,5]. One result that has emerged from

this generalization is that, in addition to the classical

Landau (cellular) type of instability, the models now

predict a pulsating hydrodynamic instability as well.

The latter arises specifically from the local pressure

coupling and thus may be physically achievable be-

cause the mass burning rate of many propellants has

been shown empirically to correlate well with

pressure. Thermal coupling, on the other hand,
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introduces additional thermal/diffusive instabilities
[5] that will not be considered here. In the present
work, we shall consider both types of hydrodynamic
instabilities, but particular focus will be placed on
the pulsating stability boundary, because this type of
instability is absent from the earlier models that ne-

glected the pressure coupling previously indicated.
As in a companion study that focused on the classical
(cellular) hydrodynamic instability [6], we develop a
formal asymptotic theory by considering the realistic
limiting case in which the gas-to-liquid density ratio
p is small.

p_ -p. = f,,.[pv,(t,_.v_) - v (f_.v_)

- p;tPrge. •fi_ + Prte_" fis]

+ fis.(v_ - av+) S(,/'2 o¢,
ot

lax 2 \ Oy] J

+ 0_" 1 + -

(4)

Mathematical Model

The governing hydrodynamic equations consist of
mass and momentum on 6ither side of thegas-liquid
interface, supplemented by a pressure-dependent
burning-rate law and associated continuity and jump
conditions across the interface [4--6]. Thus, it is as-
sumed, as in the classical models, that there is no
distributed reaction in either the liquid or gas phases
but that there exists either a pyrolysis reaction or an
exothermic decomposition at the liquid-gas inter-
face that depends on the local pressure. For sim-
plicity, it is assumed that within the liquid and gas
phases separately, the density and other fluid prop-
erties are constants, with appropriate jumps across
the lphase boundary. The nondimensional location of
the latter is denoted byx 3 = ¢is (xi, x2, t), where the
adopted coordinate system is fixed with respect to
the stationary liquid at x3 -- - ao. Then, in the mov-
ing coordinate system x = xl, y = x._, z = x3 -
¢_s (Xl, x2, t), in terms of which the liquid--gas inter-
face always lies at z = 0, the complete nondimen-
sional formulation of the problem in the absence of
thermal coupling is given by

V.v = 0, z#0 (1)

Ov 0_ Ov

d.t Ot dz
+ (v.V)v = (0,0, - Fr -_)

{pl} ! l
-- 1 Vp + [_rgJ V2v' z X 0 (2)

subject to v = 0 at z = -oo and the interface con-
ditions

fis × v_ = !_s )< V+

_,.(v_ - av+) = (1 - p)S(,,) -_

fas.v_ - S(¢_) _ = A(p+)
O$

(3)

f

fi_ × [pv+ (fi_.v÷) - v_ (fi,.v
)

+(v_- pv+)S(_O -_]

= 6s X (p2Prge._ "fis - Prte-'fas) (5)

where the latter represent continuity of transverse
velocity components (no slip), conservation of (nor-
mal) mass flux, the mass burning-rate law, and con-
servation of normal and transverse components of
momentum flux, respectively. Here, v and p denote
velocity [with respect to the original (xl, x2, x3) co-
ordinate system] and pressure, and the + subscripts
denote evaluation at z = 0-*.The parameters Pr_and
Prg denote the liquid and gas-phase Prandtl num-
bers, p and ). are the gas-to-liquid density and ther-
mal diffusivity ratios, Fr is the Froude number, e is
the rate-of-strain tensor, and ? is the surface-tension
coefficient. All of these quantities are defined in
terms of their dimensional counterparts in the no-
menclature. In addition, the factor S(¢_,) and the
unit normal fi, are given by S(¢_) -_ [1 + (OCPs/i}'x)"2
+ (0¢,_/aS)2]-t_and fi_ = (-0¢,/_x,-o_J_y,
1)S(¢_), while the expressions for the gradient
operator V and the Laplacian V°- in the moving
coordinate system are given by V = [0/_ -
(O¢,/Ox)d/Oz, O/Oy - (OCJOy)O/Oz, O/Oz] and
V2 = O_lo_xe + ff21Oy_ + [1 + (O¢_./0x)e +
(OCJOy)2]02/0z2 - 2(O_,lOx)O21OxOz -
2(O¢,lOy)O21OyOz- (02¢,/0x 2 + 02¢_JOy2)OlOz.We
remark that the factor multiplyin_y in equation 4 is
the curvature -V" r, and note that p2Prg = 12Prl,
where txis the gas-to-liquid viscosity ratio.

Finally, we observe that the burning rate A(p) in
the last ofequat/ons 3 is assumed, in accordance with
numerous experimental correlations for both solid
and liquid propellants [7], to depend on the local gas
pressure at the interface, where A is normalized to
unity for the case of steady, planar burning. Indeed,
in the linear stability analysis that follows, the pres-
sure sensitivity A_ = 0A/_lp =o (where, as indicated
in equation 6 in t'he following, p = 0 is the unper-
turbed gas pressure at z = 0 *) of the local burning
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rate will emerge as an important parameter. In fact,

A,, is the only information about A(p) that will appear

e_plicidy, although in a nonlinear stability analysis,

more detailed information in the form of higher de-
rivatives would enter into the calculations (cf. Ref.

[8]). We remark that, depending on the particular
ro llant A is not necessaril ositive and ma inp pe , p yp y

tact take on zero and negative values over certain

pressure ranges [2,7].

A nontrivial basic solution to the foregoing prob-

lem, corresponding to the special case of a steady,

planar dettagration, is given by

_= -t, v° = (0,0, v°)

v0 = (0 z<0,p-I _ 1, z>0

p°(z) = I-Fr-lz + p-t _ 1, z < 0
[- pFr-lz, z > 0 (6)

The linear stability analysis of this solution now pro-

ceeds in a standard fashion. However, owing to the

significant number of parameters, a complete anal-

ysis of the resulting dispersion relation is quite com-

plex, and we follow our previous approach [6] by
restricting further consideration to the realistic pa-

rameter regime p _ 1,/_ _ 1 and, in the ease of

microgravity, Fr - 1 _ 1. In contrast, the earlier clas-

sical studies only considered special limiting cases

and/or assumptions. Thus, in the study due to Lan-

dau [1], viscosity was neglected and the effects of
gravity (assumed to act normal to the undisturbed

planar interface in the direction of the unburned liq-
uid) and surface tension were shown to be stabiliz-

ing, leading to a criterion for the absolute stability

for steady, planar deflagration of the form (in our
nond/mensional notation) 47Fr- lp2/(l - p) > 1. In

the study due to Levich [3], surface tension was ne-

glected, but the effects due to the viscosity of the
liquid were included, leading to the absolute stability

criterion Fr- ]Prl(3p)3/2 > 1, Thus, these two studies,

both of which assumed a constant normal burning
rate (A = 1), demonstrated that sufficiently large

values of either viscosity or surface tension, when

coupled with the effects due to gravity, may render

steady, planar deflagration stable to hydrodynamic

disturbances. In our recent study [6], these results
were synthesized and extended to the more realistic

case of a nonconstant burning rate (i.e., Ap # 0) in
ht e limiting parameter regime identified earlier. In

the present work, we summarize these results for the

classical cellular boundary and use the resulting scal-

ings to derive an expression for the pulsatin_hydro-
dynamic stability boundary that arises from the pres-

sure dependence of the local burning rate.

Linear Stability Problem

With respect to the basic solution, equation 6, the

perturbation quantities 6s(x, y, t), u(x, y, z, t), and
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¢(x, y, z, t) are defined as _, = _'(t) + 6, v =

v°(z) + u, and p = p°(z) + if, respectively. Substi-

tuting these definitions into the nonlinear model de-

fined earlier and linearizing about the basic solution,

the perturbation problem becomes

Ou I + au_ + _u 3 O, z # 0 (7)
Ox Oy Oz

llOu au (_ + {_1 Fr_] Odpspj-g + _- = _ -if,

0..(_+ {_} Fr_I 06, 0_)

IP ,I
+ LoXt,rd (8)

subject to u =

Ullz= O- --

2u 02U _--_2)

Oatz = -ooand

06,
Ullz.o* = (p-I _ 1) --_--

_ uel:.o , = (p-I _ 1)86,

06,
- pu31...o. = (1 - p) _-

(9)

06,
u31:.o- - _ = Avfl:.o.

_1:. 0- - _1=. 0. = 2(ual..0. - u31=.0- )

(10)

Ou.3 _ _u3+
{a26_ a2_,]

- e \-_-T + -_T/ (Ii)

Oul Ou3

Ou] &t 3

- er_ -_-_-0- + _-:-o- = o (13/

where equations 8 and 10 have been used to simplify

equations 11-13.

Nontrivial harmonic solutions for 6. u, and _, pro-

portiona] to e ia +'k_x+ik,, that satisfy equations 1 and

2 and the boundary and boundedness conditions at

= +__ are givenby

_b,_ = eh"C'*'tklx+tk._l

( = d,a÷,j,,,+a,._ _bt ek= - Fr -1, z < 0 (14)
[b2e -k: - pFr-] z > 0
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It I = _d,,_*iklx+tk_l

.Ib3e'lz - ikl(io9 + k)-lble k=, z < 0
[b4e '=- ikl(iogp - k)-lbze -k:-, z > 0 (15)

U 2 = el,Ot+iklx+ik_

._b._e't= - ikz(io9 + k)-Ible kz, z < 0 (16)
[b6e '=- ikz(icop - k)-lbz, e -k:, z > 0

U3 _ ehot÷iklx+ik._.y

bTeq:" - k(io9) + k)-lbtekZ, z < 0• bse = + k(iogp - k)-lb_e -k=, z > 0 (17)

where the foregoing solution has been normalized

by setting the coefficient of the harmonic depen-

dence of q_, to unity. Here, the signs of k t and kz
may be either positive or negative, and we have em-

ployed the definitions k = (k_ + k_) 1/2, and q and r

are defined as 2erlq = 1 + [1 + 4Prl(io9 +
Prtk_)] 1/2 and 2pPrtr -- 1 - [1 + 4#Prl(io_ p +

l_er_k2)]lj_.
Substituting this solution into the interface con-

ditions 9-13 and using equation 7 for z X 0 yields

nine conditions for the eight coefficients bt-b s and

the complex frequency (dispersion relation) too(k).

In particular, these conditions are given by

iklb3 + ik_b5 + qb7

= iklb4 + tkob_ + rb s = 0 (18)

b3 - ikl(ia_ + k)-tbj - b4

+ tkl (iogp - k)-lb_ = (p-t _ 1)ik 1 (19)

bs - ik2(i_o + k)-tbl - b_

+ ik 2 (imp - k)-lb.z = (p-t _ 1)ik 2 (20)

b7 - k(io9 + k)-lbt - pbs

- pk (io9p - k)-lb2 = (1 - p)io9 (21)

b7 - k(io9 + k)-lbl - Apb 2

-- io9 - pFr-lAp (22)

[1 + k(io9 + k)-l(2kPrt - 1)]bt

- [1 + k(iwp - k)-1(2kltPrt + 2 - p)]b_

+ (1 - 2,Prlq)b 7 - (9 - p - 2,uPrtr)b s

= (1 - p)(Fr -_ - i_o) + _,k_ (23)

(#erlr - 1)b4 + (2kltPrt + 1)(t¢op - k)-liklb.2

+ ikllzPrtbs + (l - Prtq)b 3 + (2Prtk - 1)

(io9 + k)-liklbl - iklPrtb 7 =. (p-I _ 1)ikl

(24)

(ttPrtr - 1)b6 +

(2k/xPrt + 1)(imp - k)-lik._b2

+ ik,2ttPrlb8 + (1 - Prtq)bg

+ (2Prtk - 1)(io9 + k)-tik2bj

_ ikzertbr = (p-l _ 1)ike (25)

Although the foregoing problem is linear in the co-

efficients bl-bs, explicit expressions for the disper-

sion relation im(k) and the neutral stability bound-

aries are not readily obtainable in closed form,

except in certain special cases as noted later. How-

ever, it is possible to develop tractable perturbation

expansions for these quantities in the realistic limit

that the density and viscosity ratios p and/_ are small,

as is Fr- _ in the case of reduced gravity.

Asymptotic Analysis of the Cellular Stability

Boundary

It turns out that the p ,_ i limit implies the exis-

tence of several different wave-number regimes [6],

which in turn implies several different expansions for

the dispersion relation. This is motivated by consid-
ering the solution of equations 18-25 in the limit of

zero viscosity (p = Pr t -- 0), which leads to a trac-

table form of the dispersion relation for arbitrary p.

In particular, the neutral stability boundaries with

respect to infinitesimal hydrodynamic disturbances

proportional to e_t*-_, where k and x are the trans-
verse wave number and coordinate vectors, respec-

tively, are given for A v < 0 by [5]

AP=

p(1 - p)Fr -] + p_,k _ - (1 - p)k

Pf(3 - a)Fr-1 + a°-_,k_ + (1 - a)(2 - a)k

--<0, 09 =0

(26)

and

Ap = -#/(1 - p), fo b = k [(1 + p)

•(1 - p)-_Fr -_ + k2(1 - p)-t_, + k/p] (27)

where k -- Ikl. For A, > 0 the basic solution is
y

always unstable, and thus steady, planar combustion

is only stable in the region A., < 0 that lies between
these two curves (Fig. 1). Tl_e first of these bound-

aries is a cellular boundary (o9 = 0) that corresponds
to the classical Landau instability. Indeed, in the

limit Ap = 0, corresponding to a constant normal

burning rate independent of pressure, Landau's clas-
sical result is recovered since in the limit that ),Fr- _

approaches the value (1 - p)/4p _- from below, the
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.._J.. / J_'lr'l m Z " 0 _10

......................................................
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Co,-_l-p)")
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F[c. 1. Hydrodynamic neutral sta-

bility boundaries in the limit of zero

viscosity.

cellular stability boundary recedes from the region
Ap < 0. The pulsating stability boundary (27), on the

other hand, only occurs for nonzero Ap and, hence,
was not predicted by the classical theories that as-

sumed a constant normal burning rate. We note that

zero and negative values of Ap over certain pressure

ranges are characteristic of the HAN-based liquid

propellants mentioned earlier [2].

The formalism necessary to analyze the fully vis-

cous problem is suggested by the fact that, for small

p, the cellular boundary (26) has different limiting

forms dependent on the relative magnitude ofk with

respect to p. Thus, based on characteristicparameter

values, we introduce a bookkeeping parameter t ,_:

1 and define the scaled parameters g*, p*, p*, and

A_ according to p = p'e, p = It*e, Ap = ApS, and

either Fr- l = g or Fr- 1 = g'e, where ? and Prl =-

P are regarded as O(1) and the scaling for Ap_ is mo-
tivated by equation 26. Here, the second scaling for

Fr- lcorresponds to a reduced gravity limit, whereas

the first definition indicates the normal gravity case.

Equation 26 then suggests three wave-number
scales; an inner (small) scale ki, the outer O(1) scale

k, and a far outer (large) scale kf = ktL where the
inner scale is defined as ki = k/e for Fr-l _ O(1)

and kt = k/e 2 for the reduced gravity limit Fr- 1

O(e). Thus, in each of these regions, the correspond-

ing leading-order expressions for A_ are deduced
from equation 26 as

Aj*01-- /P*(P*g - k_)/2k_
{p*(p*g* - kj)/2k_

_(o) 1 , _(f) I . ,- _ p, - _p {p rk_- _) (28)

and hence a uniformly valid composite expansion

A_(_)(k) may be constructed as



2380 PROPELLANTS

AT,<,_-AT,_'_+ _,,A*¢"'+ A*/r>

- lim ATI_/ - lira A*If>
k_ k£-,0

v

1 [ep-2g/2k1 P* + ep *2yk + (29)

where the definitions of ki and k£ have been used to

express the final result in terms of k, and the upper

and lower expressions for A*( _ correspond respec-

tively to the normal and rec_uced gravity limits de-

scribed earlier. In terms of the original unscaled pa-

rameters, equation 29 becomes 2A v _ -p + 7p2k

+ Fr- lp2/k, which, in the parameter regime consid-

ered, is a leading-order asymptotic representation of

the exact relation 26. It is readily deduced from

equations 28 and 29, as discussed in further detail

elsewhere [6], that surface tension stabilizes large

wave-number disturbances, while gravity stabilizes
small wave-number perturbations. In the reduced-

gravity limit, the minimum in the stability boundary
is thus shifted to smaller wave numbers, and thus

the hydrodynamic cellular instability becomes a

long-wave instability phenomenon (Fig. 2).

Corresponding results may be obtained for the vis

cous case. However, to deduce the asymptotic

forms of both the cellular and the pulsating stability

boundaries, it is preferable from the standpoint of
tractability to introduce the scalings introduced pre-

viously and appropriate perturbation expansions for
the coefficients b_ directly into equations 18--25 for

each wave-number regime, and to obtain the neutral

stabi//ty boundary in question from the expanded

form of those equations. Thus, for the cellular

boundaryA*(k) [6], we deduce the following expan-

sions and results for each wave-number regime.

(i) k _ O(1)

r _ rze + ..., r t = la*Pk 2

q _ qo + "'"

qo = (2P) -1 [1 + (1 + 4P2k 2)1/2]

b,- + + + ...

(30)

i = 2, 8; bi -- bl°) + bt 11 e + ""

i = i, 3, 4, 5, 6, 7 (31)

Ap = A_ (') e-- e(A_ (''_ + A"{ I'') e + '")

A?/o_= - p*/Z (32)

{e_ + ...r _la* ekzi t.5 +

q - (2P) -J + ek} + ...

Ibl'' +bl i=2,8
bi - [bll I e + blel e "2 + "'"

t,, [bl___ + b131 e3 ...

(33)

b_ _ b} -21 e -a + bj -l_ e -I + "-

t = 2, 4, 6, 8 (37)

Ap = A_ Ill e _ _.(A_)Ill + A_II I e + ""); A*_II - -p*

2p*_*ell+ kd/p*_+ _*p + _o*e)]
+

_u*e(1 + p*ekr) - [_ - (1 + 4u*_e_])_'_](p*_ + _u*e)
(38)

We observe that the leading-order results 32 and
35 are equivalent to the corresponding inviscid re-
suits 28. Thus, to leading order, neither the inner
nor the outer wave-number regimes are influenced

by viscous effects, which, to a first approximation,
are only significant for large wave-number distur-

bances. This is reflected in the leading-order ex-

pression for the cellular stability boundary given by

equation 38, where, among other features, it is read-

ily observed that both the liquid and the gas-phase

viscosities (through the parameters P and/a'P, re-

spectively) enter into this expression, reflecting an

equal influence of viscous and surface-tension ef-

fects on the neutral stability boundary in the large

wave-number regime. The equal importance of gas-
phase viscosity relative to that of the liquid phase

stems from the fact that gas-phase disturbances are,

according to equations 37, larger in magnitude than

those in the liquid phase, such that a weak damping

of a larger magnitude disturbance is as significant as

i = 1, 3, 4, 5, 6, 7 (34)

Ap = A*(i)._p e- e(a*,l + a_Io e + ...)

[,o*(p*g - ki)/2ki
A_(_I _ [p*(p*g* - kt)/2k, (35)

(ill) k = kr/e

r _ r(_i) e -1 + ""

1 - (1 + 4/_*_P_k]) v_

r_-_l = 2#*P

q _ ql_il* -_ + "", q¢_i) = kf (36)

b_-bl_-_lt-_ + bl °> + "", i = 1,3,5,7
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HYDRODYNAMIC STABILITY BOUNDARIES (p << 1)

° 1 A_ Inviscid Case (P = O)

l(ep'er-Lo) unstable k ((cp'_,)-'.o)

?-

0'
I

r- ,

7

i l i i i i i _1 i !

t s a 4 s e v' __to t t

unstable {eellular)yo

.'._. t_
....................................Pr-t# O. 7==0 u,=O

o,-p'_) Pr-' = "r= 0 ,-, = 0

stable

O.-p') t# _ 0

unstable (pulsating)

FIG. 2. Asymptotic representation

of the cellular hydrodynamic neutral

stability boundary in the limit of zero

viscosity. The upper (/ower) solid

curves correspond to the two cases

described by equations 29 for normal

and reduced-gravity regimes, re-

spectively (curves drawn for the
caset -- 0.04, p* = 1.0, g = 2.5,

g* = 1.0).

an O(1) damping of a smaller magnitude distur-

bance. In the limit P --> 0, the inviscid expression 28
.... *(J)is recovered. It xs easily shown that hmk_ Ao =
- p*/2, so that the far outer solution can be matched

to the outer solution 32. Indeed, a uniformly valid

composite expansion spanning all three wave-num-
ber regimes may be constructed as in the inviscid

case, giving the result

A_(c) _ -p* +

2p.p*e[] + _k(p*r + _*e + gp'e)]

4p*/'(1 + d<p*e) - (p*), ÷ 2p*/')[] - (1 + 4p'2i_k_) =_]

+ 2k [_g"

or, reverting to unsealed parameters,

(39)

A_, _> _ -p +

2p_e[1 + k(pr + _ue + 2pe)]

+ -_Fr -I

(4o)

The cellular stability boundaries, based on equation

39, are reproduced in Fig. 3, where only those por-

tions of the curves that lie in the region A_ --< 0 are

shown. For sufficiently small positive values of Ap, it
may be shown that there always exists a positive

(real) root ico of the dispersion relation, which im-

plies that this region is intrinsically unstable. We

note from equation 38 that as kf increases, A_(f ) in-
creases, intersecting the A*(J 0 = 0 axis at the value

ky = (p*r)-_[I - p*e/(p*_ + 2p'e)], which agrees
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-. HYDRODYNAMIC STABILITY BOUNDARIES (p << I)

(tp'_-',o) unstable k ((tp'?)-'.o)
d_

11

Fxc. 3. Asymptotic representation
of the cellular hydrodynamic neutral

stability boundary for the viscous

case. The upper and lower sets of

curves correspond to the normal and

reduced-gravity regimes, respec-

tively, in the asymptotic limit consid-
ered in this work (curves drawn for

the case _ -_ .04, p* = 1.0, g = 6.0,

g* = 2.0). The solid curves corre-

spond to the inviscid limit (P = 0)
with nonzero surface tension (? =

2.5). The dash-dot curves corre-

spond to nonzero surface tension (?
= 2.5) and liquid viscosity (P = 1.0)

but zero gas-phase viscosity _*P --

0). The dash-dot-dot curves differ

from the dash-dot curves by the ad-

dition of gas-phase viscosity _*P =
1.0) and are similar to the dash-dot-
dot-dot curves, where the latter cor-

respond to larger viscosities (P =

_u*P -- 2.0). The dash-dot-dot-dot-

dot curves correspond to a viscous
case (P --/_*P = 1.0) but with zero

surface tension (? = 0), so that, from

equation 38, the curves do not inter-

cept the A_ = 0 axis.

with the inviscid result in the limit ,u*P _ 0. It is

readily seen from Fig. 3 that, as in the inviscid case,
the essential qualitative difference between the

normal and reduced-gravity curves is the location of

the critical wave number for instability. Specifically,

the minimum in the neutral stability boundaries oc-

curs for O(1) values of k under normal gravity, and

at k _ O(e ]_) in the reduced-gravity limit considered

here. It is also clear from Fig. 3 that increasing the

values of any of the parameters P, p'P, or _,serves

to shrink the size of the unstable domain through

damping of short-wave perturbations. The non-neg-

ligible effects of gas-phase viscosity represents an

important correction to Levich's original treatment

[3] in which these effects were simply assumed to

be small. The results 39-40 thus synthesize and sig-

nificantly extend the classical Landau-Levich results

[1,3], not only in allowing for a dynamic dependence

of the burning rate on local conditions in the vicinity

of the hquid--gas interface but also in its formal treat-

ment of those processes (surface tension, liquid and

gas-phase viscosity) that affect damping of large
wave-number disturbances.

Asymptotic Analysis of the Pulsating Stability
Boundary

As indicated previously, the existence of a nonsta-

tionary pressure dependence on the burning rate

(i.e., Av # 0 leads to the prediction of a pulsating

hydroc[ynamic stability boundary that is absent when
such a pressure coupling is neglected, as in the origi-
nal Landau-Levich theories. In the inviscid case,

this boundary (equation 27) is a straight line that lies

below the cellular boundary discussed earlier, but

this is modified under the influence of viscosity, as
we shall demonstrate.

For the scalings adopted in the preceding section
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[inparticular,forP - O(1),/z _ O(e)], it turns out

that, unlike the cellular stability boundary for which

viscous effects only have a leading-order effect in the

far outer wave-number regime, the effects of viscos-

ity have a leading-order effect on tile pulsating
boundary for O(1) wave numbers as well. Thus, in

the outer wave-number region, we seek a solution
for the dispersion relation in the form ito - _- 1/2(ico0

+ iohe TM + io)_ l_z + " "), where the leading-order
term is suggested by the explicit results for the in-

viscid case [5,6], and the expansion in powers ofe TM

is suggested by the expansions for r and q given be-
low equation 17, which have the form

r _ r(i/2)t 1_ + r(.3/4)6 "3/4 + ¢-18 + --.

r<t/z) = -io%p*, r(_4) = --icolp*

r 1 = -ito2p* - (g*Pk) _ (41)

q _ q(_l/4)e -1/4 + qoe ° + ...

q(- t/4) = (i¢°o/P) vz

q0 = (2P) -1 [1 + iCOl/(io_o/P) v2] (42)

Corresponding expansions for the coefficients b t in

equations 18-25 are determined as

bi = bl-1)e-I + bi-3/4)e -.3/4

+ bl-l_)t-1/2 + ..., i = 1,2, 8

bj = b)-tn-)t-l?z + b (-l/4) e-t/4 + ...i

(43)

i = 3,4,5,6;

b_ = bl-V')e -_f4 + bl°>e0 + ..., i = 7 (44)

where the leading terms in the expansions for bi, b2,
b4, b6, and bs are consistent with the inviseid results

[5] and the remaining coefficients appear only for

nonzero values of P and are conservatively postu-

lated to have the indicated expansions. Substituting
these expansions into equations 18--25 and equating

coefficients of like powers of e, we obtain the lead-
ing-order equations and results

ikj b_- l_z) + ik_ b._-l_) + q__ v4) b_- v4) = 0

= ikl bC4-1/2) + ik_ b_ -l_z) + r()/z)bg 1

tC" + b(_-" - _(s-" = o

(45)

b[-" = -k/p*, b_-_>= (i%)_/k

b¢s- l) = _ (k/p*)(1 + A_/p*) (46)

where the last of equations 46 was obtained from

the leading-order difference of equations 21 and 22,

and the remainder of the leading-order versions of
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equations 18--25 give redundant results. Combining
equations 46, we obtain

(itoo) 2 = (k2/p*)(1 + 2A_,/p*) (47)

and thus (ito0) 2 <> 0 for A* ,_ -p*/2, which essen-

tially recovers the leading-order cellular stability

boundary (32) for O(1) wave numbers, but gives no

information on the pulsating boundary because im 0

is purely imaginary forA_ < -p*/2. Hence, stabil-

ity in the latter region is determined by higher-order
coefficients in the foregoing expansion for i_o.

Continuing with the analysis of the expanded

forms of equations 18-25, we obtain the second-or-

der equations and results

ik) b_ -1/4) + ik 2 b.(5-1/4) + q(-],'4) b_7°)

+ qo b¢7-1/4) = 0 (48)

ikl b(4-v4) + ikzb(6 -1/4) + rll_ ) b(s-3/4)

+ r(_4)b_s-t) = 0 (49)

J, b_-,,_>- q(__,,h_7-,,,_= ia,d, (t - A_/p')

b_-_ - (k/iO_o)b_-a'_ = io_ (50)

= b_s-t/_) = 0 (51)

where the first of equations 50 was obtained from

the sum of equation 19 multiplied by ik_ and equa-

tion 20 multiplied by ikz and the first of equations

45, the fact that b (-_4) = 0 follows from the differ-
ence of equations 21 and 22, and the last two of

equations 51 follow from equations 24 and 25 in con-

junction with the result b_ -'w4) = 0. From these re-
suits and the first of equations 45, we thus conclude
that

b(7-1/4) = i_o_ = 0,

bl-_/_t = imo (1 - A_/p*) (52)2

where the fact that i_ = 0 implies the need to
calculate ico_ to determine stability in the region
A_* < -p*/2. Proceeding in this fashion, we obtain
from the next-order versions of equations 21 and 23,
the difference of equations 21 and 22, and the sum

of equation 24 multiplied by iki and equation 25
multiplied by ik_, the relations

b_O_- (l_/i_lb_-_) +

[(i¢o_ + k)/(i_oo)_lk b_ -t)

- p*b[ -_) + p*b(_-_) = itos

bl -_,_) + (k/ia_o)(2Pk - 1)bt-_) + b[ -_/e)

(53)

+ (2icoop*/k)b[ -l) - 2b(8-_tu) = -i_o (54)
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_. HYDRODYNAMIC STABILITY BOUNDARIES (p << 1)

°].Ap Viscous Case (P > 0)

unstable

o, ,_'_,-,.o) k (C_l-'.o)

,,,_':,;._., .._" .

_" (o,-p'/z)
stable

. I(o,-o') pulsatinl[ boundaries (co_ O)

! " "_ "*_, *', '............ P=.I

\\ \, ""--...... .....
\ \ \, ...........
\ \. \ _b,e ....... £.-.25

_ \ \\ "-_ _,)_ ........
\ \ -

'7

\ \
unstable \ "_"

... \
\ \.

x \

_P **.5 Flc. 4. Asymptotic representation
of the pulsating hydrodynamic neu-

tral stability boundary for the viscous

case (P > 0). The region between the

pulsating and cellular boundaries

(the latter are shown on an expanded

scale in Fig. 3) is the stable region

with respect to hydrodynamic insta-

bility.

-p*b_s-l/21 + p*b_-l_zl + (iooop*_-/k)b_-ll

-iO2op*bC8-1) + k b_z-l_'z) + io2op*b_-1)

+ icool,_o_- (zek- 1)(kz/i_)b_-_= 0 (56)

which, when combined with the expressions for

b_-l), b_-l), b_8-1), b_-l/2), and imo given earlier, con_
stitute four equations for the four unknowns

b_-u_), b(0t7, b_-s _), and io)_. Solving these simulta-
neous equations, we thus obtain

b_O) = - 2Pk _.

b_-*/_ = [1 - (A_,/p*)Z]icoo

i_oz --k[(A_/a*)_- ziok- I] (58)

Equation 58 isthe desiredresult,from which we
(55) conclude thatio2__ 0 for (A_/p*)"2_ 1 + 2Pk.

Thus, in the regionA_ < 0, i¢o_vanishes on the
boundary

A_ _ -p*(1 + 2Pk) _/_ (59)

which is a pulsating boundary (Fig. 4) because, from

equation 47, ito 0 is purely imaginary along this curve.
Equation 59 is valid for O(1) wave numbers, but

because it matches to the leading-order inviscid in-

ner pulsating boundary A_ _ -p* as k -_ 0 and
becomes large in a negative sense as k becomes

large, it is clear that equation 59 represents the pul-

sating boundary for arbitrary wave numbers. That is,

for P _ O(1), the effects of (liquid) viscosity on the

pulsating boundary are, to a first approximation, ab-
(57) sent for small wave numbers, are first felt for O(1)
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wave-number perturbations, and are sufficient to

move this boundary to larger-magnitude values

A_ - O(e-l/2) in the far outer wave-number re-
gime, In contrast, the cellular boundary 39 is unaf-
fected for O(1) and smaller wave numbers and is

only modified an O(1) amount for O(_-1) wave nmn-

bers. Thus, the hydrodynamic pulsating boundary is
more sensitive to viscous effects than is the corre-

sponding cellular stability boundary. For smaller-

magnitude viscosities such that P = /_ - O(e), it

may be shown by an analogous calculation (Appen-

dix) that O(1) modifications to the pulsating bound-

ary then occur in the far outer wave-number regime

according to A* - -p*(1 + 2 Pkf) 1/2, which, in
terms of unscal_d quantities, is the same as equation
59.

of the pressure-sensiti_Sty coefficient A., the persis-
tence of the pulsating stability bounda 4 iin the pres-

ence of viscous effects) for small wave numbers sug-

gests that it should be observable in those types of

liquid propellants, such as those based on hydroxy-
lammonium nitrate (HAN) and triethanolammon-

ium nitrate (TEAN), that are characterized by neg-

ative pressure sensitivities over certain pressure

ranges. In connection with this, we note that sloshing
behavior has been observed during combustion of
certain HAN-TEAN-water mixtures [2], but because

nonsteady burning can arise via secondary and

higher-order bifurcations in the cellular region [8],

as well as from a primary crossing of the pulsating

boundary described here, further measurements are

generally needed to determine the precise origin of
such behavior in any given experiment.

Conclusion

The present work has presented a formal as)anp- A

totic treatment of hydrodynamic instability for a sur- Av

face model of liquid-propellant combustion in which b_
burning takes place at the liquid-gas interface. The

model itself is based on a synthesized version of the e

classical models analyzed by Landau [1] and Levich Fr

[3], generalized to allow a coupling of the burning g

rate with the local pressure field [4,5]. The realistic

smallness of the gas-to-liquid density ratio proved to k

be a convenient small parameter upon which to base fis

an asymptotic treatment, resulting in three distinct p

wave-number regimes with different physical pro- P, Pr

cesses assuming dominance in each. Both cellular q

and pulsating hydrodynamic stability boundaries are r

predicted by the present model, the former corre- t

sponding to Landau's original notion of hydrody- u

namic instability and the latter representing a new v

prediction arising from the pressure dependence of (x, y, z)

the burning rate. For the cellular type of instability, _'

it was shown that the gravitational acceleration (as-

sumed to be normal to the undisturbed liquid-gas

interface in the direction of the liquid) is responsible _-

for stabilizing long-wave disturbances, whereas sur- /t

face tension and viscosity are effective in stabilizing p

short-wave perturbations. In the case of pulsating $,

instability, neither gravity nor surface tension play a

leading-order role, and viscous effects are the dom- _,

inant stabilizing influence. Indeed, for O(1) liquid 09

Prandtl numbers, the stabilizing effects of (liquid)

viscosity on pulsating instability are significant for
disturbances whose wave numbers are O(1) and

higher. On the other hand, viscous effects are only

significant for large wave-number disturbances in

the case of cellular instability, where the influence

of gas and liquid viscosity are comparable despite the

small ratio of these two parameters. Although the

onset of pulsating hydrodynamic instability is_re-
dicted to occur only for sufficiently negative values

Nomenclature

burning rate

pressure-sensitivity coefficient
coefficients in perturbation solution (i =

1,2 ..... 8)
rate-of-strain tensor

Froude number

inverse Froude number (gravitational ac-
celeration)

perturbation wave number
unit normal

pressure
Prandtl number

quantity defined below equation (17)

quantity defined below equation (17)
time variable

perturbation velocity vector

velocity vector
moving coordinate system
surface-tension coefficient

small bookkeeping parameter

perturbation pressure

gas-to-liquid thermal diffusivity ratio

gas-to-liquid viscosity ratio

gas-to-liquid density ratio

perturbation in location of gas-liquid in-
terface

location of gas-liquid interface

complex perturbation frequency

Subscripts., Superscripts:

i inner wave-number regime or integer vari-
able

f far outer wave-number regime

l liquid

g gas
o outer wave-number regime

* scaled quantity
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Appendix. The Pulsating Stability Boundary
for Small Liquid Prandh Numbers

For small liquid viscosities such that P = Pe and

the same scalings introduced in the P - O(1) case

analyzed in the main body of the text, the effect of

viscosity on the cellular boundary disappears at lead-

ing order (P --o 0 in equations 39 and 40), while the
effect of viscosity on the pulsating boundary is only

significant in the far outer wave-number regime. In

that case, the appropriate expansions analogous to

those introduced for the P - O(1) case are given by
ico _ _-'_2(iO9o + io91_ TM + io9_ v2 + ...)and

r _ r(_l/l_ I/°- + O(Ul/4), r(_lpz) = -icoop*

q_ q(_.v,)e _/4 + O(e-'), q(-5/4) = (io)o//_) l_ (60)

bi = bl-z)e-2 + b}-7/4)8 -7/4

+ b(-_2)e-a/2 + i = 1, 2, 8 (61)
i " " "'

b_ = bl-a_2)e-'v'2 + b(-514t_-5/4 +

of the next nontrivM coefficient in the above expan-

sion for ioo. Thus, setting io9_ = 0 in the last ofequa-

tious 63, the pulsating stability boundm T in the far

outer wave-number regime is Wen by

A,,*_ -p* (1 + 9Pks)"2 (64)

which, in the limit k/----) 0, matches with the leading-
order pulsating boundary A* _ -p* in the outer

wave-number region, which'is unaffected by viscos-

ity to this order o£approximation. Thus, equation 64,

which in terms of k is given by Ap p (1 +
2Pekp/_, is valid for arbitrary wave numbers. Writing

if' in terms of its unscaled counterpart P, this ex-

pression becomes identical to equation 59, which
thus remains valid in the limit of small P.
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i = 3,4,5,6

b_ = b}-S/4)e -_/4 + bl-1)e-I + .... i = 7 (62)

Substituting these expansions into equations 18-25

and equating terms corresponding to like powers of

e then gives, as previously, a sequence of equations
for the recursive determination of the coefficients in

the foregoing expansions. Similar to the calculation

for P - O(1) in the outer wave-number regime, we
obtain in this case that

(lOgo)_ = 2(k}/v*_)(a7, - 2,,*), i_,, =0,

i_ = }/[(a_/t,*)_ - 2P_r -_l (63)

where/]* = (p*/2)(p*ykf - 1) is the inviscid cel-

lular boundary in the far outer wave-number regime

given by the last of equations 28. The first of equa-

tions 63 thus recovers the cellular stability boundary,

but because io_0 is purely imaganary for A*. < ,4".,

stability in that region is determined by the real part
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